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Radial Mode Matching Analysis
of Ridged Circular Waveguides

Uma Balaji and Ruediger Vahldieck

Abstract——In this paper a radial mode matching analysis is presented to
calculate rigorously the TE and TM mode propagation in single- double-,
triple-, and quadruple-ridged circular waveguide structures. The ridges
have been cut radially in all the cases. Results are presented for variations
of the ridge depth and ridge thickness and are compared to results from
finite element analysis. Furthermore, for the first time, the characteristic
impedance of the double and quadruple-ridged circular waveguides have
been calculated using the power-voltage definition.

1. INTRODUCTION

Various numerical techniques have been applied in the past to
solve the eigenvalue problem of single- [1], double- [2]-[4], triple-
{51, [6], and quadruple-ridged [4], [7], [8] circular waveguides with
ridges of uniform thickness or ridges that are radially cut. Most
of the above work is based on the discretization of the space or
space and time to solve the Helmholtz equation. To avoid memory
consurning space discretization techniques, a radial mode matching
method has been developed [14] for the analysis of single- and
double-ridged circular waveguides. The method is extended here to
triple- and quadruple-ridged circular waveguides. In order to avoid
mixed coordinate systems which occur when rectangular ridges are
utilized in a cylindrical waveguide, the ridges are assumed to be
conically shaped [10]. Mechanically, they are as simple to fabricate
as the more traditional rectangular ridges. The approach developed in
the following is rigorous and can be applied to symmetrical as well
as asymmetrical structures,

II. THEORY

1) Eigenvalue Problem: To start with we first consider the cross
section of the single-ridged circular waveguide of Fig. 1(a) and (b).
The double- and quadruple-ridged circular waveguide can be easily
derived from the following theory by considering electric wall (ew)
and magnetic wall (mw) symmetry. The eigenvalues of the orthogonal
dominant modes and higher order modes of such a structure can be
obtained from the solution of the Helmholtz equation in cylindrical
coordinates.

Solving the Helmholtz equation in each homogeneous subregion
and considering the boundary condition. the potential function for
regions 1 and 2 for TE modes can be written as follows:

( 31 sin n¢ r = 1for mw
1) _ =
v = Z AnTn(kep) {cos ng 1 = 0for ew @
N2 ,
W = 3" CulHP (kb)) B (kep)
— HY (kb)Y H® (kep)]
mr
COos l(¢—9) r=1, 3andl——mf0rmw
cos (¢ — @) r=0andl= _”9 for ew.
2
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Fig. 1. Geometry of a single-ridged circular wavegude (a) ridge depth <
radius and (b) ridge depth > radius.

The functions J,, are the Bessel functions of order n and H; are
the Hankel functions of order I. The unknown coefficients of the
eigenfunctions are A, and (', and b is the radius of the circular
waveguide. The special case of ridge depth equal to the radius has
been treated in [13]. For the special case with ridge depth larger than
the radius, the potential functions for the TE modes in the region 2
is the same as (2), while for region 1 it is given below

N1
ol = Z Ay Jglkep) cos

n=0

nw(o — §)
T (3)
where ¢ = (nm)/{m — 26).The potential functions for the TM modes
for both symmetries can be written 1n a similar form.

From the potential functions, the field components in each of the
regions can be derived. Equating £4 and H. for TE modes and
E. and Hy for TM modes at the interface of the two subregions
and using the orthogonality property, a system of linear equations of
infinite size as a function of k. is obtained. The size of this system
of equations is made finite depending on the truncation index N1
and N2. The ratio between N1 and V2 is chosen to be close to
the ratio of the angular widths of region 1 and region 2 to avoid
relative convergence problems [9]. However, for the case of thin
ridges the value of V1 = N2. The eigenvalues of the system of
equations [F]{x] = 0 are obtained either by searching for minimum
singular value of the characteristic matrix [F] or by searching for the
zeros of the determinant (det [F'] = 0). Since matrix singular value
decomposition offers more accurate and pole free solutions [11], this
technique has been chosen here for evaluation of the eigenvalues.

For the double- and quadruple-ridged circular waveguide an addi-
tional symimetry is considered making it possible to analyze only one
quarter of the cross section.

2) Characteristic Impedance: The characteristic impedance of the
ridged circular waveguide can be obtained using the power-voltage
definition [Z, = V™ /2P]. The slot voltage 1" for the double-ridged
and quadruple-ridged waveguide can be obtained from the electric
field along the slot. For the fundamental mode. the slot voltage is
obtained by evaluating the integral numerically in the equation below

: a 1
V=3 / Ji(kop) = dp (4
Jo P

The coefficient of the potential function corresponding to the funda-
mental mode in region 1 is assumed unity. Then the coefficients for
the fields in subregion 2 for the fundamental mode are evaluated by
solving the homogeneous characteristic equation for a given k.. The
average power transported in the quarter cross-section of the ridged
guide is determined from the sum of the average power flowing in
the subregions (1) and (2). The total average power P is four times
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this sum. For example. the power 1n region 1 for the fundamental
mode is given as

3[R )
pi =7 / / {— JE(IJ( ) cos” ¢
20p Jo Jo p? ! g

+ 7% (kep) sin” (4 pdpds. (5)

A similar expression is obtained for the power in region 2.

III. RESULTS

The nomenclature of TE,, , and TM, ,, modes of the empty
circular waveguide is maintained even though the presence of metallic
ridges distorts the field distribution of these modes. Using the above
mode nomenclature means nothing else than that those modes can
be traced back to the corresponding ones in the empty (undisturbed)
circular waveguide.

Fig. 2 shows the cutoff characteristics of a single-ridged circular
waveguide. The results of the fundamental mode have been compared
with a finite element solution [1] and good agreement was found.
Since, the ridge is positioned to load either inductively or capacitively
for the orthogonal polarizations of the TE modes. mode splitting
occurs. The mode splitting phenomenon for TE and TM modes is
represented as V (Vertical polarization or magnetic wall symmetry)
and H (Horizontal polarization or electric wall symmetry) in the
figures. In [1] 1t was reported that the low port isolation of a septum
polarizer was due to the onset of the TMo 1 mode. However. as Fig.
2 clearly shows, exceeding certain ridge penetration depth the cutoff
frequency of the TEz 1 V mode 1s lower than that of the TMo, 1 and
it 1s rather this mode that is responsible for the limited port isolation
reported in [1].

The variation of the cut off frequency of the fundamental and
higher order modes with respect to ridge penetration depth in a
double-ridged circular waveguide is shown in Fig. 3. Mode splitting
of the orthogonally polarized TE;, ;. TEz,; and TM; ; modes is
clearly shown. The splitting of these modes is due to the same reasons
as explained for the single-ridged waveguide.

For a quadruple-ridged waveguide with 1dentical ridge depths, the
cutoff characteristics for the fundamental and higher order modes
is shown in Fig. 4. The modes with magnetic wall along one
line of symmetry and electric wall along the other (TE; ;. TEs 1.
TE1. 2. etc.; TMy . 1. TM3' 1, etc. or in general TE277L+1‘ ,l/TM2m+1 n)
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Fig. 4. Cutoff characteristics of quadruple-ridged circular waveguide, ridge
thickness (26) = 10°.

have the same structure for both polarizations and hence the same
eigenvalues. In contrast, the modes such as TEg, 1, TE4, 1, and TEz 2
(in general, TEzr, ») will have either electric or magnetic walls along
both lines of symmetry for the orthogonal polarization and therefore
the loading by the ridges is either inductive or capacitive and mode
splitting occurs. In comparison to the single-ridge and double-ridge
case, the loading is higher because of the presence of additional
ridges and hence the cutoff frequencies of such modes increase or
decrease more rapidly. Similarly, modes like TMz, 1, TMy, 1, and
TMz, 2 (modes with electric or magnetic walls along both lines of
symmetry) do split up which is a phenomenon that has not been
reported in [7], [8]. But unlikc for TE modes, the loading by the
ridges is always inductive for TM modes and the loading is higher
in comparison to the single and double-ridged waveguide due to the
presence of the additional ridges.

The cut off frequency variation of a triple-ridged circular wave-
guide versus ridge penetration depth is shown in Fig. 5. A good
agreement with measurements [5] is observed. The bandwidth of
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the triple-ridged circular waveguide is the largest of all the cases
investigated since the orthogonal polarizations are degenerate.

The characteristic impedance of double- and quadruple-ridged cir-
cular waveguide has not been investigated in the literature before but
is of practical importance in the design of related components [12].
The characteristic impedance of double-ridged circular waveguide for
various penetration depth for vertical polarization is shown in Fig. 6.
The variation of characteristic impedance of the quadruple-ridged
circular waveguide with the ridge penetration depth at three different
frequencies is shown in Fig. 7. In comparison to the double-ridged
circular waveguide, the characteristic impedance of the quadruple-
ridged waveguide with the increased ridge penetration depth is
slightly lower because of the presence of the two additional ridges.

1V. CoNCLUSION

The radial mode matching method has been utilized in the analysis
of cutoff characteristics for a family of ridged circular waveguides.
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Mode splitting phenomena are observed for the TE and TM modes
in single-, double- and quadruple-ridged circular waveguides but
not in triple-ridged circular waveguides. The triple-ridged circular
waveguide has the largest bandwidth since the orthogonally polarized
modes are degenerate. However. the double- and quadruple-ridged
circular waveguides too have large bandwidth in applications where
only symmetric discontinuities are present. It is found that the
characteristic impedance of the quadruple-ridged circular waveguide
decreases a little more rapidly with increased ridge penetration depth
when compared to a double-ridged circular waveguide.

REFERENCES

[1T R Behe and P. Brachat. “Compact duplexer-polarizer with semicircular
waveguide,” IEEE Trans Antennas Propagat, vol 39, pp. 1222-1224,
Aug. 1991.

[2] D. A. Al-Mukhtar and J. E. Sitch, “Transmission-line matrix method
with rregularly graded space,” IEE Proc, vol 128, pt. H, no. 6, pp.
209-305, Dec. 1981.

[3] P. Daly, “Polar geometry waveguides by finite element methods,” /EEE
Trans. Microwave Theory Tech. vol. MTT-22, pp. 202-209, 1974.

[4] F. Canatan, "Cutoff wavenumbers of ridged circular waveguides via
Ritz—Galerkin approach,” Electronic Lett., vol. 25, pp. 1036-1038, Aug.
89.

[5] B. M. Dillon and A. A. P Gibson, “Triple-ridged circular waveguides.”
J. of Electromag. Waves Applicat., vol. 9, pp. 145-156, 1995.

[6] A.S. Omar, A. Jostingmeier, C. Rieckmann, and S. Lutgert, “Applica-
tion of GSD technique to the analysis of slot-coupled waveguides,” IEEE
Trans. Microwave Theory Tech. vol. 42, pp. 2139-2148, Nov. 1994.

[71 M. H Chen, N. Tsandoulas, and F. G. Willwerth, “Modal characteristics
of quadruple-ridged circular and square waveguides,” JIEEE Trans.
Microwave Theory Tech vol. MTT-22, pp. 801-804, Aug. 1974.

[8] W. Sun and C A Balanis, “Analysis and design of quadruple-
ridged waveguides.” IEEE Trans. Microwave Theory Tech. vol. 42,
pp. 2201-2207, Dec. 1994.

[9] Y C. Shih. “The mode-matching method.” in Numerical Techniques for
Microwave and Millimeter-wave Passive Structures. T. Ttoh, Ed  New
York: Wiley, 1989, pp. 592-621

[10] B. V. de la Filolie and R. Vahldieck, “‘Coaxial and circular waveguide
bandpass filters using printed metal inserts,” in /EEE MTT-S Dig., 1992,
pp. 905-908

[11] V. A. Labay and J. Bornemann, “Matrix singular value decomposition
for pole free solutions of homogeneous matrix equations as applied to
numerical rodeling.” IEEE Microwave Guided Wave Lett., vol. 2. pp.
49-51, Feb. 1992.

[12] S.J. Skinner and G. L James, *“Wide-band orthomode transducer,” IEEE
Trans. Microwave Theory Tech., vol. 39, pp. 294-300, Feb. 1991.

[13] R. F. Harnington, Tune-Harmonic Electromagnetic Fields. New York:
McGraw-Hill, 1961.

[14] U. Balaji and R. Vahldieck, “Radial mode matching analysis of nidged
circular waveguide,” in IEEE MTT-S Dig., May 1995, pp. 637-640.



